Two New Norditerpenoid Alkaloids of Aconitum nagarum

Fan ZHANG¹, Shu Lin PENG¹, Fan LUO², Li Sheng DING¹*

¹Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 ²College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041

Abstract: Two new norditerpenoid alkaloids were isolated from the roots of *Aconitum nagarum*. Their structures were elucidated as 13-hydroxyfranchetine **1** and 10-dehydroxyflavaconitine **2**, respectively, by 1D and 2D NMR experiments.

Keywords: *Aconitum nagarum*, norditerpenoid alkaloid, 13-hydroxyfranchetine, 10-dehydroxyflavaconitine.

Aconitum nagarum Stapf is mainly distributed in Yunnan province of China. Its roots can release pain and dispel dampness. They have been used as a folk medicine in China for the treatment of cold limbs in syncope, epigastric pain, vomiting and diarrhea¹. The chemical constituents of this plant have been investigated^{1.4}. For the further investigation, two new norditerpenoid alkaloids 13-hydroxyfranchetine **1** and 10-dehydroxyflavaconitine **2** were isolated from the ethanol extract of the roots of this plant. In this paper, we report their structural elucidation.

Compound **1** is a white amorphous powder, m.p. 97-98°C, $[\alpha]_{D}^{25}$ -120 (*c* 0.1, CHCl₃). The HR-ESIMS of **1** indicated a protonated molecular ion peak at *m/z* 540.2971 [M+H]⁺ requiring a molecular formula C₃₁H₄₁NO₇. The IR spectrum (3734, 2929, 1713cm⁻¹) exhibited the presence of hydroxyl and benzoyl groups. Compound **1** showed the distinct NMR (**Table 1**) features of a franchetine-type norditerpenoid alkaloid skeleton⁵,

^{*} E-mail: lsding@cib.ac.cn

Figure 1 The key HMBC correlations for 1

bearing an N-ethyl ($\delta_{\rm H}$ 1.01, t, 3H, *J*=7 Hz), three methoxyl groups ($\delta_{\rm H}$ 3.47, 3.37, 3.28, s, each 3H), a benzoyl group [$\delta_{\rm H}$ 8.07 (d, 2H, *J*=8 Hz), 7.57 (t, 1H, *J*=8 Hz), 7.45 (t, 2H, *J*=8 Hz)] and a tertiary hydroxyl group ($\delta_{\rm C}$ 77.3 s) as well as a N,O-mixed acetal moiety [$\delta_{\rm H}$ 4.37 (s, 1H), 4.40 (d, 1H, *J*=6 Hz); $\delta_{\rm C}$ 92.5 d, 74.7 d]. In the HMBC spectrum (**Figure 1**) of **1**, the long-range correlations between methoxyl signals at $\delta_{\rm H}$ 3.37 (s), 3.47 (s), 3.28 (s) and carbonic signals at $\delta_{\rm C}$ 86.3 (d), 86.0 (d), 79.1 (t), respectively, indicated three methoxyl at C-1, C-16 and C-18. Also, a hydroxyl group was located at C-13 due to correlations between C-13 and H-12, H-15 and H-16 in HMBC. Observations of the correlations between H₂-15/C-7 and H₂-15/C-8 supported a double bond between C-7 and C-8. A broad singlet at $\delta_{\rm H}$ 5.06 was attributed to H-14 β , indicating the presence of an ester group at C-14⁵. Finally, the comparison of 1D and 2D NMR data of **1** with those of franchetine⁵ confirmed the structure of 13-hydroxy-franchetine **1**.

Compound 2 is a white powder, m.p. 130-132°C, $[\alpha]_{D}^{25}$ +48 (c 0.1, CHCl₃). The molecular formula C31H41NO10 of 2 was derived from its HR-ESIMS (m/z 588.2837 $[M+H]^+$). Its IR spectrum showed distinctive signals at 3494 and 1722 cm⁻¹ for hydroxyl and acetyl groups, respectively. Compound 2 exhibited characteristic NMR (Table 1) spectral features of an aconitine-type norditerpenoid alkaloid⁶ bearing three methoxyl groups (δ_H 3.78 s, 3.33 s, 3.19 s), an acetyl group (δ_H 1.42 s; δ_C 172.4 s, 21.3 q), a benzoyl group ($\delta_{\rm H}$ 8.04 d, 7.59 d, 7.47 t) and two hydroxyl groups ($\delta_{\rm C}$ 74.0 s, 78.9 d). Among them, three methoxyl groups could be located at C-6, C-16 and C-18, respectively, on the basis of the presence of the correlations between OMe-6 (δ_H 3.19) and C-6 (δ_C 83.4, d), OMe-16 (δ_H 3.78) and C-16 (δ_C 89.6, d), OMe-18 (δ_H 3.33) and C-18 ($\delta_{\rm C}$ 79.8, t) in HMBC spectrum (**Figure 2**). In ¹H NMR spectrum, the methoxyl signal at lower field ($\delta_{\rm H}$ 3.78, OMe-16) indicated the presence of two hydroxyl groups at C-13 and C-15⁷. Also, the acetyl signal at higher field ($\delta_{\rm H}$ 1.42) and a doublet (J=5 Hz) at δ_H 4.91 (H-14 β) suggested the acetyl and benzoyl groups were located at C-8 and C-14 respectively⁸. Comparison of ¹H and ¹³C NMR data of 2 with those of flavaconitine⁹ showed that two structures looked very similar, but no hydroxyl group at C-10 for 2. So the structure of 2 was determined as 10-dehydroxyflavaconitine.

No.	1		2	
	δ_{H}	δ_{C}	δ_{H}	δ_{C}
1	3.36 (m)	86.3 (d)	3.70 (br s)	72.0 (d)
2	2.41, 1.95 (each m)	24.3 (t)	1.65, 1.55 (each m)	30.2 (t)
3	1.76 (dd, <i>J</i> =14,3)	32.7 (t)	1.89, 1.68 (each m)	29.0 (t)
	1.55 (m)			
4		37.3 (s)		38.4 (s)
5	2.25 (s)	47.3 (d)	2.31 (br s)	44.1 (d)
6	4.40 (d, <i>J</i> =6)	74.7 (d)	4.00 (d, <i>J</i> =6)	83.4 (d)
7	5.76 (d, <i>J</i> =6)	129.1 (d)	2.73 (br s)	50.7 (d)
8		135.7 (s)		91.6 (s)
9	3.20 (br s)	44.0 (d)	2.82 (dd, <i>J</i> =7,5)	43.1 (d)
10	2.66 (m)	47.0 (d)	2.15 (m)	39.6 (d)
11		50.5 (s)		48.7 (s)
12	2.12 (t, J=11), 2.01 (m)	38.9 (t)	2.32, 2.21 (each m)	36.2 (t)
13		77.3 (s)		74.0 (s)
14	5.06 (br s)	83.5 (d)	4.91 (d, <i>J</i> =5)	79.1 (d)
15	3.90 (dd, <i>J</i> =12,8)	39.0 (t)	4.51 (d, <i>J</i> =5)	78.9 (d)
	2.64 (m)			
16	3.35 (m)	86.0 (d)	3.43 (d, <i>J</i> =5)	89.6 (d)
17	4.37 (s)	92.5 (d)	3.07 (br s)	57.6 (d)
18	3.15, 3.04 (each d, <i>J</i> =9)	79.1 (t)	3.57, 3.11 (each d, J=8)	79.8 (t)
19	2.44, 2.04 (each m)	52.1 (t)	3.27 (d, <i>J</i> =11), 2.30 (m)	49.2 (t)
NH			3.96 (br s)	
NCH ₂ CH ₃	2.60, 2.41 (each m)	49.1 (t)		
NCH ₂ CH ₃	1.01 (t, <i>J</i> =7)	13.1 (q)		
OMe-1	3.37 (s)	57.1 (q)		
OMe-6			3.19 (s)	58.1 (q)
OMe-16	3.47 (s)	58.0 (q)	3.78 (s)	61.4 (q)
OMe-18	3.28 (s)	59.4 (q)	3.33 (s)	59.1 (q)
Bz-CO		166.7 (s)		165.9 (s)
1'		130.3 (s)		129.7 (s)
2',6'	8.07 (d, <i>J</i> =8)	129.8 (d)	8.04 (d, <i>J</i> =7)	129.6 (d)
3',5'	7.45 (t, <i>J</i> =8)	128.4 (d)	7.47 (t, <i>J</i> =7)	128.6 (d)
4'	7.57 (t, <i>J</i> =8)	133.0 (d)	7.59 (t, <i>J</i> =7)	133.3 (d)
COCH_3				172.4 (s)
COCH ₃			1.42 (s)	21.3 (q)

Table 1 ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) for **1** and **2** (in CDCl₃, δ_{ppm} , J_{Hz})

Acknowledgments

We thank Ms. Yan ZHOU, Hua Yi QI, and Wei Jian REN (Chengdu Institute of Biology, Chinese Academy of Sciences) for measuring MS and NMR spectra.

References

- 1. J. Y. Dong, L. Li, Journal of Plant Resources and Environment, 2000, 9(1), 1.
- H. C. Wang, D. Z. Zhu, Z. Y. Zhao, et al., Acta Chimica Sinica, 1980, 38(5), 475. 2.
- 3. H. C. Wang, Y. L. Gao, R. S. Xu, et al., Acta Chimica Sinica, 1981, 39(9), 869.
- 4. S. Y. Chen, S. H. Li, X. J. Hao, Acta Botanica Sinica, 1986, 28(1), 86.
- 5.
- F. P. Wang, Z. B. Li, X. P. Dai, et al., Phytochemistry, 1997, 45(7), 1539.
 S. W. Pelletier, N. V. Mody, B. S. Joshi, L. C. Schramm, Alkaloids: Chemical and Biological 6. Perspectives, John Wiley & sons, New York, 1984, vol. 2, p. 205.
- 7. S. Y. Chen, Acta Chimica Sinica, 1979, 37(1), 15.
- 8. F. P. Wang, Acta Pharmaceutica Sinica, 1981, 16(12), 943.
- A. U. Rahman, Handbook of Natural Products Data. Volume 1 Diterpenoid and Steroidal 9. Alkaloids, Elsevier Science Publishers B.V., New York, 1990, p. 81.

Received 19 July, 2004